Remarks on Square Functions in the Littlewood-paley Theory
نویسندگان
چکیده
We prove that certain square function operators in the Littlewood-Paley theory defined by the kernels without any regularity are bounded on L p w , 1 < p < ∞, w ∈ Ap (the weights of Muckenhoupt). Then, we give some applications to the Carleson measures on the upper half space.
منابع مشابه
ar X iv : 0 81 1 . 28 54 v 1 [ m at h . FA ] 1 8 N ov 2 00 8 L p estimates for non smooth bilinear Littlewood - Paley square functions
L p estimates for non smooth bilinear Littlewood-Paley square functions on R. Abstract In this work, some non smooth bilinear analogues of linear Littlewood-Paley square functions on the real line are studied. Mainly we prove boundedness-properties in Lebesgue spaces for them. Let us consider the function φn satisfying c φn(ξ) = 1 [n,n+1] (ξ) and consider the bilinear operator Sn(f, g)(x) := R ...
متن کاملPseudo-localization of Singular Integrals and Noncommutative Littlewood-paley Inequalities
Understood in a wide sense, square functions play a central role in classical Littlewood-Paley theory. This entails for instance dyadic type decompositions of Fourier series, Stein’s theory for symmetric diffusion semigroups or Burkholder’s martingale square function. All these topics provide a deep technique when dealing with quasi-orthogonalitymethods, sums of independent variables, Fourier m...
متن کاملHardy Space Estimates for Littlewood-paley-stein Square Functions and Calderón-zygmund Operators
In this work, we give new sufficient conditions for Littlewood-Paley-Stein square function and necessary and sufficient conditions for a Calderón-Zygmund operator to be bounded on Hardy spaces H p with indices smaller than 1. New Carleson measure type conditions are defined for Littlewood-Paley-Stein operators, and the authors show that they are sufficient for the associated square function to ...
متن کاملLittlewood-Paley Operators on Morrey Spaces with Variable Exponent
By applying the vector-valued inequalities for the Littlewood-Paley operators and their commutators on Lebesgue spaces with variable exponent, the boundedness of the Littlewood-Paley operators, including the Lusin area integrals, the Littlewood-Paley g-functions and g μ *-functions, and their commutators generated by BMO functions, is obtained on the Morrey spaces with variable exponent.
متن کاملun 2 00 0 LITTLEWOOD - PALEY THEORY AND THE T ( 1 ) THEOREM WITH NON DOUBLING MEASURES
Let μ be a Radon measure on R which may be non doubling. The only condition that μ must satisfy is μ(B(x, r)) ≤ C r, for all x ∈ R, r > 0 and for some fixed 0 < n ≤ d. In this paper, Littlewood-Paley theory for functions in L(μ) is developed. One of the main difficulties to be solved is the construction of “reasonable” approximations of the identity in order to obtain a Calderón type reproducin...
متن کامل